Adaptive Spiking Neural Networks for Audiovisual Pattern Recognition

نویسندگان

  • Simei Gomes Wysoski
  • Lubica Benusková
  • Nikola K. Kasabov
چکیده

The paper describes the integration of brain-inspired systems to perform audiovisual pattern recognition tasks. Individual sensory pathways as well as the integrative modules are implemented using a fast version of spiking neurons grouped in evolving spiking neural network (ESNN) architectures capable of lifelong adaptation. We design a new crossmodal integration system, where individual modalities can influence others before individual decisions are made, fact that resembles some characteristics of the biological brains. The system is applied to the person authentication problem. Preliminary results show that the integrated system can improve the accuracy in many operation points as well as it enables a range of multi-criteria optimizations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving spiking neural networks for audiovisual information processing

This paper presents a new modular and integrative sensory information system inspired by the way the brain performs information processing, in particular, pattern recognition. Spiking neural networks are used to model human-like visual and auditory pathways. This bimodal system is trained to perform the specific task of person authentication. The two unimodal systems are individually tuned and ...

متن کامل

Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition

Spatioand spectro-temporal data (SSTD) are the most common types of data collected in many domain areas, including engineering, bioinformatics, neuroinformatics, ecology, environment, medicine, economics, etc. However, there is lack of methods for the efficient analysis of such data and for spatio-temporal pattern recognition (STPR). The brain functions as a spatiotemporal information processin...

متن کامل

Biologically Realistic Neural Networks and Adaptive Visual Information Processing

This work aims to review the basic concepts of biologically realistic neural networks when applied to visual pattern recognition. A new simple model of biologically realistic visual pattern recognition that adaptively learns by example through synaptic plasticity and changes in structure is also presented. This system uses a spiking neural network composed of integrate-and-fire neurons and Hebb...

متن کامل

A Survey on Pattern Recognition Using Spiking Neural Networks with Temporal Encoding and Learning

This paper, recognize of the patterns using spiking neural networks with temporal encoding and learning. Neural networks place the important role in cognitive and decision making process. Processing the different type of inputs lead to find the discriminate the pattern. Leaky Integrate Fire Neurons are used to recognize the patterns. During the recognition supervised learning method is used to ...

متن کامل

Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks

Spiking Neural Networks are considered as the third generation of Artificial Neural Networks, these neural networks naturally process spatio-temporal information. Spiking Neural Networks have been used in several fields and application areas; pattern recognition among them. For dealing with supervised pattern recognition task a gradientdescent based learning rule (Spike-prop) has been developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007